Elevated spinal cyclooxygenase and prostaglandin release during hyperalgesia in diabetic rats.
نویسندگان
چکیده
Diabetic rats display exaggerated hyperalgesic behavior in response to noxious stimuli that may model aspects of painful diabetic neuropathy. This study examined the contribution of spinal prostaglandin production to this exaggerated hyperalgesic behavior. Rats were implanted with spinal dialysis probes and received noxious stimulation to the hind paw by subcutaneous injection of 0.5% formalin solution. Prostaglandin E(2) (PGE(2)) was measured in dialysates of lumbar spinal cerebrospinal fluid concurrent with behavioral responses to formalin injection. In separate experiments, formalin-evoked behavioral responses were measured after intrathecal delivery of either a cyclooxygenase inhibitor or an EP(1) receptor antagonist, and cyclooxygenase protein was measured in spinal cord homogenates. Diabetic rats exhibited exaggerated behavioral responses to paw formalin injection and a concurrent prolongation of formalin-evoked PGE(2) release. Formalin-evoked behavioral responses were dose-dependently reduced in diabetic rats by spinal delivery of a cyclooxygenase inhibitor or an EP(1) receptor antagonist. Protein levels of cyclooxygenase-2 were elevated in the spinal cord of diabetic rats, whereas cyclooxygenase-1 protein was reduced. Hyperalgesic behavior in diabetic rats is associated with both increased cyclooxygenase-2 protein and cyclooxygenase-mediated PGE(2) release. Spinal delivery of selective inhibitors of cyclooxygenase-2 or antagonists of prostaglandin receptors may have therapeutic potential for treating painful diabetic neuropathy.
منابع مشابه
Pathogenesis of spinally mediated hyperalgesia in diabetes.
Hyperalgesia to noxious stimuli is accompanied by increased spinal cyclooxygenase (COX)-2 protein in diabetic rats. The present studies were initiated to establish causality between increased spinal COX-2 activity and hyperalgesia during diabetes and to assess the potential involvement of polyol pathway activity in the pathogenesis of spinally mediated hyperalgesia. Rats with 1, 2, or 4 weeks o...
متن کاملNonopioid actions of intrathecal dynorphin evoke spinal excitatory amino acid and prostaglandin E2 release mediated by cyclooxygenase-1 and -2.
Spinal dynorphin is hypothesized to contribute to the hyperalgesia that follows tissue and nerve injury or sustained morphine exposure. We considered that these dynorphin actions are mediated by a cascade involving the spinal release of excitatory amino acids and prostaglandins. Unanesthetized rats with lumbar intrathecal injection and loop dialysis probes received intrathecal NMDA, dynorphin A...
متن کاملIntrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity.
Activation of protease-activated receptors (PARs) in non-neural tissue results in prostaglandin production. Because PARs are found in the spinal cord and increased prostaglandin release in the spinal cord causes thermal hyperalgesia, we hypothesized that activation of these spinal PARs would stimulate prostaglandin production and cause a cyclooxygenase-dependent thermal hyperalgesia. PARs were ...
متن کاملThe acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1.
Western blots show the constitutive expression of COX-1 and COX-2 in the rat spinal dorsal and ventral horns and in the dorsal root ganglia. Using selective inhibitors of cyclooxygenase (COX) isozymes, we show that in rats with chronic indwelling intrathecal catheters the acute thermal hyperalgesia evoked by the spinal delivery of substance P (SP; 20 nmol) or NMDA (2 nmol) and the thermal hyper...
متن کاملThe Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats
Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 51 7 شماره
صفحات -
تاریخ انتشار 2002